在k8s中通过kubelet拉起一个容器之后,用户可以指定探活的方式用于实现容器的健康性检查,目前支持TCP、Http和命令三种方式,今天介绍其整个探活模块的实现, 了解其周期性探测、计数器、延迟等设计的具体实现
1. 探活的整体设计
1.1 线程模型
探活的线程模型设计相对简单一些,其通过worker来进行底层探活任务的执行,并通过Manager来负责worker的管理, 同时缓存探活的结果
1.2 周期性探活
根据每个探活任务的周期,来生成定时器,则只需要监听定时器事件即可
1.3 探活机制的实现
探活机制的实现除了命令Http和Tcp都相对简单,Tcp只需要直接通过net.DialTimeout链接即可,而Http则是通过构建一个http.Transport构造Http请求执行Do操作即可
相对复杂的则是exec, 其首先要根据当前container的环境变量生成command,然后通过容器、命令、超时时间等构建一个Command最后才是调用runtimeService调用csi执行命令
2.探活接口实现
2.1 核心成员结构
type prober struct { exec execprobe.Prober // 我们可以看到针对readiness/liveness会分别启动一个http Transport来进行链接 readinessHTTP httpprobe.Prober livenessHTTP httpprobe.Prober startupHTTP httpprobe.Prober tcp tcpprobe.Prober runner kubecontainer.ContainerCommandRunner // refManager主要是用于获取成员的引用对象 refManager *kubecontainer.RefManager // recorder会负责探测结果事件的构建,并最终传递回 apiserver recorder record.EventRecorder }
2.2 探活主流程
探活的主流程主要是位于prober的probe方法中,其核心流程分为三段
2.2.1 获取探活的目标配置
func (pb *prober) probe(probeType probeType, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID) (results.Result, error) { var probeSpec *v1.Probe // 根据探活的类型来获取对应位置的探活配置 switch probeType { case readiness: probeSpec = container.ReadinessProbe case liveness: probeSpec = container.LivenessProbe case startup: probeSpec = container.StartupProbe default: return results.Failure, fmt.Errorf("unknown probe type: %q", probeType) }
2.2.2 执行探活记录错误信息
如果返回的错误,或者不是成功或者警告的状态,则会获取对应的引用对象,然后通过 recorder进行事件的构造,发送结果返回apiserver
// 执行探活流程 result, output, err := pb.runProbeWithRetries(probeType, probeSpec, pod, status, container, containerID, maxProbeRetries) if err != nil || (result != probe.Success && result != probe.Warning) { // // 如果返回的错误,或者不是成功或者警告的状态 // 则会获取对应的引用对象,然后通过 ref, hasRef := pb.refManager.GetRef(containerID) if !hasRef { klog.Warningf("No ref for container %q (%s)", containerID.String(), ctrName) } if err != nil { klog.V(1).Infof("%s probe for %q errored: %v", probeType, ctrName, err) recorder进行事件的构造,发送结果返回apiserver if hasRef { pb.recorder.Eventf(ref, v1.EventTypeWarning, events.ContainerUnhealthy, "%s probe errored: %v", probeType, err) } } else { // result != probe.Success klog.V(1).Infof("%s probe for %q failed (%v): %s", probeType, ctrName, result, output) // recorder进行事件的构造,发送结果返回apiserver if hasRef { pb.recorder.Eventf(ref, v1.EventTypeWarning, events.ContainerUnhealthy, "%s probe failed: %s", probeType, output) } } return results.Failure, err }
2.2.3 探活重试实现
func (pb *prober) runProbeWithRetries(probeType probeType, p *v1.Probe, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID, retries int) (probe.Result, string, error) { var err error var result probe.Result var output string for i := 0; i < retries; i++ { result, output, err = pb.runProbe(probeType, p, pod, status, container, containerID) if err == nil { return result, output, nil } } return result, output, err }
2.2.4 根据探活类型执行探活
func (pb *prober) runProbe(probeType probeType, p *v1.Probe, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID) (probe.Result, string, error) { timeout := time.Duration(p.TimeoutSeconds) * time.Second if p.Exec != nil { klog.V(4).Infof("Exec-Probe Pod: %v, Container: %v, Command: %v", pod, container, p.Exec.Command) command := kubecontainer.ExpandContainerCommandOnlyStatic(p.Exec.Command, container.Env) return pb.exec.Probe(pb.newExecInContainer(container, containerID, command, timeout)) } if p.HTTPGet != nil { // 获取协议类型与 http参数信息 scheme := strings.ToLower(string(p.HTTPGet.Scheme)) host := p.HTTPGet.Host if host == "" { host = status.PodIP } port, err := extractPort(p.HTTPGet.Port, container) if err != nil { return probe.Unknown, "", err } path := p.HTTPGet.Path klog.V(4).Infof("HTTP-Probe Host: %v://%v, Port: %v, Path: %v", scheme, host, port, path) url := formatURL(scheme, host, port, path) headers := buildHeader(p.HTTPGet.HTTPHeaders) klog.V(4).Infof("HTTP-Probe Headers: %v", headers) switch probeType { case liveness: return pb.livenessHTTP.Probe(url, headers, timeout) case startup: return pb.startupHTTP.Probe(url, headers, timeout) default: return pb.readinessHTTP.Probe(url, headers, timeout) } } if p.TCPSocket != nil { port, err := extractPort(p.TCPSocket.Port, container) if err != nil { return probe.Unknown, "", err } host := p.TCPSocket.Host if host == "" { host = status.PodIP } klog.V(4).Infof("TCP-Probe Host: %v, Port: %v, Timeout: %v", host, port, timeout) return pb.tcp.Probe(host, port, timeout) } klog.Warningf("Failed to find probe builder for container: %v", container) return probe.Unknown, "", fmt.Errorf("missing probe handler for %s:%s", format.Pod(pod), container.Name) }
3. worker工作线程
Worker工作线程执行探测,要考虑几个问题:1.容器刚启动的时候可能需要等待一段时间,比如应用程序可能要做一些初始化的工作,还没有准备好2.如果发现容器探测失败后重新启动,则在启动之前重复的探测也是没有意义的3.无论是成功或者失败,可能需要一些阈值来进行辅助,避免单次小概率失败,重启容器
3.1 核心成员
其中关键参数除了探测配置相关,则主要是onHold参数,该参数用于决定是否延缓对容器的探测,即当容器重启的时候,需要延缓探测,resultRun则是一个计数器,不论是连续成功或者连续失败,都通过该计数器累加,后续会判断是否超过给定阈值
type worker struct { // 停止channel stopCh chan struct{} // 包含探针的pod pod *v1.Pod // 容器探针 container v1.Container // 探针配置 spec *v1.Probe // 探针类型 probeType probeType // The probe value during the initial delay. initialValue results.Result // 存储探测结果 resultsManager results.Manager probeManager *manager // 此工作进程的最后一个已知容器ID。 containerID kubecontainer.ContainerID // 最后一次探测结果 lastResult results.Result // 探测连续返回相同结果的此时 resultRun int // 探测失败会设置为true不会进行探测 onHold bool // proberResultsMetricLabels holds the labels attached to this worker // for the ProberResults metric by result. proberResultsSuccessfulMetricLabels metrics.Labels proberResultsFailedMetricLabels metrics.Labels proberResultsUnknownMetricLabels metrics.Labels }
3.2 探测实现核心流程
3.2.1 失败容器探测中断
如果当前容器的状态已经被终止了,则就不需要对其进行探测了,直接返回即可
// 获取当前worker对应pod的状态 status, ok := w.probeManager.statusManager.GetPodStatus(w.pod.UID) if !ok { // Either the pod has not been created yet, or it was already deleted. klog.V(3).Infof("No status for pod: %v", format.Pod(w.pod)) return true } // 如果pod终止worker应该终止 if status.Phase == v1.PodFailed || status.Phase == v1.PodSucceeded { klog.V(3).Infof("Pod %v %v, exiting probe worker", format.Pod(w.pod), status.Phase) return false }
3.2.2 延缓探测恢复
延缓探测恢复主要是指的在发生探测失败的情况下,会进行重启操作,在此期间不会进行探测,恢复的逻辑则是通过判断对应容器的id是否改变,通过修改onHold实现
// 通过容器名字获取最新的容器信息 c, ok := podutil.GetContainerStatus(status.ContainerStatuses, w.container.Name) if !ok || len(c.ContainerID) == 0 { // Either the container has not been created yet, or it was deleted. klog.V(3).Infof("Probe target container not found: %v - %v", format.Pod(w.pod), w.container.Name) return true // Wait for more information. } if w.containerID.String() != c.ContainerID { // 如果容器改变,则表明重新启动了一个容器 if !w.containerID.IsEmpty() { w.resultsManager.Remove(w.containerID) } w.containerID = kubecontainer.ParseContainerID(c.ContainerID) w.resultsManager.Set(w.containerID, w.initialValue, w.pod) // 获取到一个新的容器,则就需要重新开启探测 w.onHold = false } if w.onHold { //如果当前设置延缓状态为true,则不进行探测 return true }
3.2.3 初始化延迟探测
初始化延迟探测主要是指的容器的Running的运行时间小于配置的InitialDelaySeconds则直接返回
if int32(time.Since(c.State.Running.StartedAt.Time).Seconds()) < w.spec.InitialDelaySeconds { return true }
3.2.4 执行探测逻辑
result, err := w.probeManager.prober.probe(w.probeType, w.pod, status, w.container, w.containerID) if err != nil { // Prober error, throw away the result. return true } switch result { case results.Success: ProberResults.With(w.proberResultsSuccessfulMetricLabels).Inc() case results.Failure: ProberResults.With(w.proberResultsFailedMetricLabels).Inc() default: ProberResults.With(w.proberResultsUnknownMetricLabels).Inc() }
3.2.5 累加探测计数
在累加探测计数之后,会判断累加后的计数是否超过设定的阈值,如果未超过则不进行状态变更
if w.lastResult == result { w.resultRun++ } else { w.lastResult = result w.resultRun = 1 } if (result == results.Failure && w.resultRun < int(w.spec.FailureThreshold)) || (result == results.Success && w.resultRun < int(w.spec.SuccessThreshold)) { // Success or failure is below threshold - leave the probe state unchanged. // 成功或失败低于阈值-保持探测器状态不变。 return true }
3.2.6 修改探测状态
如果探测状态发送改变,则需要先进行状态的保存,同时如果是探测失败,则需要修改onHOld状态为true即延缓探测,同时将计数器归0
// 这里会修改对应的状态信息 w.resultsManager.Set(w.containerID, result, w.pod) if (w.probeType == liveness || w.probeType == startup) && result == results.Failure { // 容器运行liveness/starup检测失败,他们需要重启, 停止探测,直到有新的containerID // 这是为了减少命中#21751的机会,其中在容器停止时运行 docker exec可能会导致容器状态损坏 w.onHold = true w.resultRun = 0 }
3.3 探测主循环流程
主流程就很简答了执行上面的探测流程
func (w *worker) run() { // 根据探活周期来构建定时器 probeTickerPeriod := time.Duration(w.spec.PeriodSeconds) * time.Second // If kubelet restarted the probes could be started in rapid succession. // Let the worker wait for a random portion of tickerPeriod before probing. time.Sleep(time.Duration(rand.Float64() * float64(probeTickerPeriod))) probeTicker := time.NewTicker(probeTickerPeriod) defer func() { // Clean up. probeTicker.Stop() if !w.containerID.IsEmpty() { w.resultsManager.Remove(w.containerID) } w.probeManager.removeWorker(w.pod.UID, w.container.Name, w.probeType) ProberResults.Delete(w.proberResultsSuccessfulMetricLabels) ProberResults.Delete(w.proberResultsFailedMetricLabels) ProberResults.Delete(w.proberResultsUnknownMetricLabels) }() probeLoop: for w.doProbe() { // Wait for next probe tick. select { case <-w.stopCh: break probeLoop case <-probeTicker.C: // continue } } }
扫码二维码 获取免费视频学习资料
- 本文固定链接: http://phpxs.com/post/7110/
- 转载请注明:转载必须在正文中标注并保留原文链接
- 扫码: 扫上方二维码获取免费视频资料