编程学习网 > WEB开发 > JavaScript开发 > Javascript高性能动画与页面渲染
2015
02-06

Javascript高性能动画与页面渲染

No setTimeout, No setInterval

如果你不得不使用setTimeout或者setInterval来实现动画,那么原因只能是你需要精确的控制动画。但我认为至少在现在这个时间点,高级浏览器、甚至手机浏览器的普及程度足够让你有理由有条件在实现动画时使用更高效的方式。

什么是高效

页面是每一帧变化都是系统绘制出来的(GPU或者CPU)。但这种绘制又和PC游戏的绘制不同,它的最高绘制频率受限于显示器的刷新频率(而非显卡),所以大多数情况下最高的绘制频率只能是每秒60帧(frame per second,以下用fps简称),对应于显示器的60Hz。60fps是一个最理想的状态,在日常对页面性能的测试中,60fps也是一个重要的指标,the closer the better。在Chrome的调试工具中,有不少工具都是用于衡量当前帧数:

接下来的工作中,我们将会用到这些工具,来实时查看我们页面的性能。

60fps是动力也是压力,因为它意味着我们只有16.7毫秒(1000 / 60)来绘制每一帧。如果使用setTimeout或者setInterval(以下统称为timer)来控制绘制,问题就来了。

首先,Timer计算延时的精确度不够。延时的计算依靠的是浏览器的内置时钟,而时钟的精确度又取决于时钟更新的频率(Timer resolution)。IE8及其之前的IE版本更新间隔为15.6毫秒。假设你设定的setTimeout延迟为16.7ms,那么它要更新两个15.6毫秒才会该触发延时。这也意味着无故延迟了 15.6 x 2 – 16.7 = 14.5毫秒。

            16.7ms
DELAY: |------------|

CLOCK: |----------|----------|
          15.6ms    15.6ms

所以即使你给setTimeout设定的延时为0ms,它也不会立即触发。目前Chrome与IE9+浏览器的更新频率都为4ms(如果你使用的是笔记本电脑,并且在使用电池而非电源的模式下,为了节省资源,浏览器会将更新频率切换至于系统时间相同,也就意味着更新频率更低)。

退一步说,假使timer resolution能够达到16.7ms,它还要面临一个异步队列的问题。因为异步的关系setTimeout中的回调函数并非立即执行,而是需要加入等待队列中。但问题是,如果在等待延迟触发的过程中,有新的同步脚本需要执行,那么同步脚本不会排在timer的回调之后,而是立即执行,比如下面这段代码:

function runForSeconds(s) {
    var start = +new Date();
    while (start + s * 1000 > (+new Date())) {}
}

document.body.addEventListener("click", function () {
    runForSeconds(10);
}, false);

setTimeout(function () {
    console.log("Done!");
}, 1000 * 3);

如果在等待触发延迟的3秒过程中,有人点击了body,那么回调还是准时在3s完成时触发吗?当然不能,它会等待10s,同步函数总是优先于异步函数:

等待3秒延迟 |    1s    |    2s    |    3s    |--->console.log("Done!");

经过2秒     |----1s----|----2s----|          |--->console.log("Done!");

点击body后

以为是这样:|----1s----|----2s----|----3s----|--->console.log("Done!")--->|------------------10s----------------|

其实是这样:|----1s----|----2s----|------------------10s----------------|--->console.log("Done!");

John Resign有三篇关于Timer性能与准确性的文章: 1.Accuracy of JavaScript Time, 2.Analyzing Timer Performance, 3.How JavaScript Timers Work。从文章中可以看到Timer在不同平台浏览器与操作系统下的一些问题。

再退一步说,假设timer resolution能够达到16.7ms,并且假设异步函数不会被延后,使用timer控制的动画还是有不尽如人意的地方。这也就是下一节要说的问题。

垂直同步问题

这里请再允许我引入另一个常量60——屏幕的刷新率60Hz。

60Hz和60fps有什么关系?没有任何关系。fps代表GPU渲染画面的频率,Hz代表显示器刷新屏幕的频率。一幅静态图片,你可以说这副图片的fps是0帧/秒,但绝对不能说此时屏幕的刷新率是0Hz,也就是说刷新率不随图像内容的变化而变化。游戏也好浏览器也好,我们谈到掉帧,是指GPU渲染画面频率降低。比如跌落到30fps甚至20fps,但因为视觉暂留原理,我们看到的画面仍然是运动和连贯的。

接上一节,我们假设每一次timer都不会有延时,也不会被同步函数干扰,甚至能把时间缩短至16ms,那么会发生什么呢:

(点击图像放大)

在22秒处发生了丢帧

如果把延迟时间缩的更短,丢失的帧数也就更多:

实际情况会比以上想象的复杂的多。即使你能给出一个固定的延时,解决60Hz屏幕下丢帧问题,那么其他刷新频率的显示器应该怎么办,要知道不同设备、甚至相同设备在不同电池状态下的屏幕刷新率都不尽相同。

以上同时还忽略了屏幕刷新画面的时间成本。问题产生于GPU渲染画面的频率和屏幕刷新频率的不一致:如果GPU渲染出一帧画面的时间比显示器刷新一张画面的时间要短(更快),那么当显示器还没有刷新完一张图片时,GPU渲染出的另一张图片已经送达并覆盖了前一张,导致屏幕上画面的撕裂,也就是是上半部分是前一张图片,下半部分是后一张图片:

PC游戏中解决这个问题的方法是开启垂直同步(v-sync),也就是让GPU妥协,GPU渲染图片必须在屏幕两次刷新之间,且必须等待屏幕发出的垂直同步信号。但这样同样也是要付出代价的:降低了GPU的输出频率,也就降低了画面的帧数。以至于你在玩需要高帧数运行的游戏时(比如竞速、第一人称射击)感觉到“顿卡”,因为掉帧。

requestAnimationFrame

在这里不谈requestAnimationFrame(以下简称rAF)用法,具体请参考MDN:Window.requestAnimationFrame()。我们来具体谈谈rAF所解决的问题。

从上一节我们可以总结出实现平滑动画的两个因素

  1. 时机(Frame Timing): 新的一帧准备好的时机
  2. 成本(Frame Budget): 渲染新的一帧需要多长的时间

这个Native API把我们从纠结于多久刷新的一次的困境中解救出来(其实rAF也不关心距离下次屏幕刷新页面还需要多久)。当我们调用这个函数的时候,我们告诉它需要做两件事: 1. 我们需要新的一帧;2.当你渲染新的一帧时需要执行我传给你的回调函数

那么它解决了我们上面描述的第一个问题,产生新的一帧的时机。

那么第二个问题呢。不,它无能为力。比如可以对比下面两个页面:

  1. DEMO
  2. DEMO-FIXED

对比两个页面的源码,你会发现只有一处不同:

// animation loop
function update(timestamp) {
    for(var m = 0; m < movers.length; m++) {
        // DEMO 版本
        //movers[m].style.left = ((Math.sin(movers[m].offsetTop + timestamp/1000)+1) * 500) + 'px';

        // FIXED 版本
        movers[m].style.left = ((Math.sin(m + timestamp/1000)+1) * 500) + 'px';
        }
    rAF(update);
};
rAF(update);

DEMO版本之所以慢的原因是,在修改每一个物体的left值时,会请求这个物体的offsetTop值。这是一个非常耗时的reflow操作(具体还有哪些耗时的reflow操作可以参考这篇: How (not) to trigger a layout in WebKit)。这一点从Chrome调试工具中可以看出来(截图中的某些功能需要在Chrome canary版本中才可启用)

未矫正的版本

可见大部分时间都花在了rendering上,而矫正之后的版本:

rendering时间大大减少了

但如果你的回调函数耗时真的很严重,rAF还是可以为你做一些什么的。比如当它发现无法维持60fps的频率时,它会把频率降低到30fps,至少能够保持帧数的稳定,保持动画的连贯。

使用rAF推迟代码

没有什么是万能的,面对上面的情况,我们需要对代码进行组织和优化。

看看下面这样一段代码:

function jank(second) {
    var start = +new Date();
    while (start + second * 1000 > (+new Date())) {}
}

div.style.backgroundColor = "red";

// some long run task
jank(5);

div.style.backgroundColor = "blue";

无论在任何的浏览器中运行上面的代码,你都不会看到div变为红色,页面通常会在假死5秒,然后容器变为蓝色。这是因为浏览器的始终只有一个线程在运行(可以这么理解,因为js引擎与UI引擎互斥)。虽然你告诉浏览器此时div背景颜色应该为红色,但是它此时还在执行脚本,无法调用UI线程。

有了这个前提,我们接下来看这段代码:

var div = document.getElementById("foo");

var currentWidth = div.innerWidth; 
div.style.backgroundColor = "blue";

// do some "long running" task, like sorting data

这个时候我们不仅仅需要更新背景颜色,还需要获取容器的宽度。可以想象它的执行顺序如下:

当我们请求innerWidth一类的属性时,浏览器会以为我们马上需要,于是它会立即更新容器的样式(通常浏览器会攒着一批,等待时机一次性的repaint,以便节省性能),并把计算的结果告诉我们。这通常是性能消耗量大的工作。

但如果我们并非立即需要得到结果呢?

上面的代码有两处不足,

  1. 更新背景颜色的代码过于提前,根据前一个例子,我们知道,即使在这里告知了浏览器我需要更新背景颜色,浏览器至少也要等到js运行完毕才能调用UI线程;
  2. 假设后面部分的long runing代码会启动一些异步代码,比如setTimeout或者Ajax请求又或者web-worker,那应该尽早为妙。

综上所述,如果我们不是那么迫切的需要知道innerWidth,我们可以使用rAF推迟这部分代码的发生:

requestAnimationFrame(function(){
    var el = document.getElementById("foo");

    var currentWidth = el.innerWidth;
    el.style.backgroundColor = "blue";

    // ...
});

// do some "long running" task, like sorting data

可见即使我们在这里没有使用到动画,但仍然可以使用rAF优化我们的代码。执行的顺序会变成:

在这里rAF的用法变成了:把代码推迟到下一帧执行。

有时候我们需要把代码推迟的更远,比如这个样子:

再比如我们想要一个效果分两步执行:1.div的display变为block;2. div的top值缩短移动到某处。如果这两项操作都放入同一帧中的话,浏览器会同时把这两项更改应用于容器,在同一帧内。于是我们需要两帧把这两项操作区分开来:

requestAnimationFrame(function(){
   el.style.display = "block";
   requestAnimationFrame(function(){
      // fire off a CSS transition on its `top` property
      el.style.top = "300px";
   });
});

这样的写法好像有些不太讲究,Kyle Simpson有一个开源项目h5ive,它把上面的用法封装了起来,并且提供了API。实现起来非常简单,摘一段代码瞧瞧:

function qID(){
    var id;
    do {
        id = Math.floor(Math.random() * 1E9);
    } while (id in q_ids);
    return id;
}

function queue(cb) {
    var qid = qID();

    q_ids[qid] = rAF(function(){
        delete q_ids[qid];
        cb.apply(publicAPI,arguments);
    });

    return qid;
}

function queueAfter(cb) {
    var qid;

    qid = queue(function(){
        // do our own rAF call here because we want to re-use the same `qid` for both frames
        q_ids[qid] = rAF(function(){
            delete q_ids[qid];
            cb.apply(publicAPI,arguments);
        });
    });

    return qid;
}

使用方法:

// 插入下一帧
id1 = aFrame.queue(function(){
    text = document.createTextNode("##");
    body.appendChild(text);
});

// 插入下下一帧
id2 = aFrame.queueAfter(function(){
    text = document.createTextNode("!!");
    body.appendChild(text);
});

使用rAF解耦代码

先从一个2011年twitter遇到的bug说起。

当时twitter加入了一个新功能:“无限滚动”。也就是当页面滚至底部的时候,去加载更多的twitter:

$(window).bind('scroll', function () {
    if (nearBottomOfPage()) {
        // load more tweets ...
    }
});

但是在这个功能上线之后,发现了一个严重的bug:经过几次滚动到最底部之后,滚动就会变得奇慢无比。

经过排查发现,原来是一条语句引起的:$details.find(“.details-pane-outer”);

这还不是真正的罪魁祸首,真正的原因是因为他们将使用的jQuery类库从1.4.2升级到了1.4.4版。而这jQuery其中一个重要的升级是把Sizzle的上下文选择器全部替换为了querySelectorAll。但是这个接口原实现使用的是getElementsByClassName。虽然querySelectorAll在大部分情况下性能还是不错的。但在通过Class名称选择元素这一项是占了下风。有两个对比测试可以看出来:1.querySelectorAll v getElementsByClassName 2.jQuery Simple Selector

通过这个bug,John Resig给出了一条(实际上是两条,但是今天只取与我们话题有关的)非常重要的建议

It’s a very, very, bad idea to attach handlers to the window scroll event.

他想表达的意思是,像scroll,resize这一类的事件会非常频繁的触发,如果把太多的代码放进这一类的回调函数中,会延迟页面的滚动,甚至造成无法响应。所以应该把这一类代码分离出来,放在一个timer中,有间隔的去检查是否滚动,再做适当的处理。比如如下代码:

var didScroll = false;

$(window).scroll(function() {
    didScroll = true;
});

setInterval(function() {
    if ( didScroll ) {
        didScroll = false;
        // Check your page position and then
        // Load in more results
    }
}, 250)

这样的作法类似于Nicholas将需要长时间运算的循环分解为“片”来进行运算:

// 具体可以参考他写的《javascript高级程序设计》
// 也可以参考他的这篇博客: http://www.nczonline.net/blog/2009/01/13/speed-up-your-javascript-part-1/
function chunk(array, process, context){
    var items = array.concat();   //clone the array
    setTimeout(function(){
        var item = items.shift();
        process.call(context, item);

        if (items.length > 0){
            setTimeout(arguments.callee, 100);
        }
    }, 100);
}

原理其实是一样的,为了优化性能、为了防止浏览器假死,将需要长时间运行的代码分解为小段执行,能够使浏览器有时间响应其他的请求。

回到rAF上来,其实rAF也可以完成相同的功能。比如最初的滚动代码是这样:

function onScroll() {
    update();
}

function update() {

    // assume domElements has been declared
    for(var i = 0; i < domElements.length; i++) {

        // read offset of DOM elements
        // to determine visibility - a reflow

        // then apply some CSS classes
        // to the visible items - a repaint

    }
}

window.addEventListener('scroll', onScroll, false);

这是很典型的反例:每一次滚动都需要遍历所有元素,而且每一次遍历都会引起reflow和repaint。接下来我们要做的事情就是把这些费时的代码从update中解耦出来。

首先我们仍然需要给scroll事件添加回调函数,用于记录滚动的情况,以方便其他函数的查询:

var latestKnownScrollY = 0;

function onScroll() {
    latestKnownScrollY = window.scrollY;
}

接下来把分离出来的repaint或者reflow操作全部放入一个update函数中,并且使用rAF进行调用:

function update() {
    requestAnimationFrame(update);

    var currentScrollY = latestKnownScrollY;

    // read offset of DOM elements
    // and compare to the currentScrollY value
    // then apply some CSS classes
    // to the visible items
}

// kick off
requestAnimationFrame(update);

其实解耦的目的已经达到了,但还需要做一些优化,比如不能让update无限执行下去,需要设标志位来控制它的执行:

var latestKnownScrollY = 0,
    ticking = false;

function onScroll() {
    latestKnownScrollY = window.scrollY;
    requestTick();
} 

function requestTick() {
    if(!ticking) {
        requestAnimationFrame(update);
    }
    ticking = true;
}

并且我们始终只需要一个rAF实例的存在,也不允许无限次的update下去,于是我们还需要一个出口:

function update() {
    // reset the tick so we can
    // capture the next onScroll
    ticking = false;

    var currentScrollY = latestKnownScrollY;

    // read offset of DOM elements
    // and compare to the currentScrollY value
    // then apply some CSS classes
    // to the visible items
}

// kick off - no longer needed! Woo.
// update();

理解Layer

Kyle Simpson说:

Rule of thumb: don’t do in JS what you can do in CSS.

如以上所说,即使使用rAF,还是会有诸多的不便。我们还有一个选择是使用css动画:虽然浏览器中UI线程与js线程是互斥,但这一点对css动画不成立。

在这里不聊css动画的用法。css动画运用的是什么原理来提升浏览器性能的。

首先我们看看淘宝首页的焦点图:

我想提出一个问题,为什么明明可以使用translate 2d去实现的动画,它要用3d去实现呢?

我不是淘宝的员工,但我的第一猜测这么做的原因是为了使用translate3d hack。简单来说如果你给一个元素添加上了-webkit-transform: translateZ(0);或者-webkit-transform: translate3d(0,0,0);属性,那么你就等于告诉了浏览器用GPU来渲染该层,与一般的CPU渲染相比,提升了速度和性能。(我很确定这么做会在Chrome中启用了硬件加速,但在其他平台不做保证。就我得到的资料而言,在大多数浏览器比如Firefox、Safari也是适用的)。

但这样的说法其实并不准确,至少在现在的Chrome版本中这算不上一个hack。因为默认渲染所有的网页时都会经过GPU。那么这么做还有必要吗?有。在理解原理之前,你必须先了解一个层(Layer)的概念。

html在浏览器中会被转化为DOM树,DOM树的每一个节点都会转化为RenderObject, 多个RenderObject可能又会对应一个或多个RenderLayer。浏览器渲染的流程如下:

  1. 获取 DOM 并将其分割为多个层(RenderLayer)
  2. 将每个层栅格化,并独立的绘制进位图中
  3. 将这些位图作为纹理上传至 GPU
  4. 复合多个层来生成最终的屏幕图像(终极layer)。

这和游戏中的3D渲染类似,虽然我们看到的是一个立体的人物,但这个人物的皮肤是由不同的图片“贴”和“拼”上去的。网页比此还多了一个步骤,虽然最终的网页是由多个位图层合成的,但我们看到的只是一个复印版,最终只有一个层。当然有的层是无法拼合的,比如flash。以爱奇艺的一个播放页(http://www.iqiyi.com/v_19rrgyhg0s.html)为例,我们可以利用Chrome的Layer面板(默认不启用,需要手动开启)查看页面上所有的层:

我们可以看到页面上由如下层组成:

OK,那么问题来了。

假设我现在想改变一个容器的样式(可以看做动画的一个步骤),并且是一种最糟糕的情况,改变它的长和宽——为什么说改变长和宽是最糟糕的情况呢。通常改变一个物体的样式需要以下四个步骤:

任何属性的改变都导致浏览器重新计算容器的样式,比如你改变的是容器的尺寸或者位置(reflow),那么首先影响的就是容器的尺寸和位置(也影响了与它相关的父节点自己点相邻节点的位置等),接下来浏览器还需要对容器重新绘制(repaint);但如果你改变的只是容器的背景颜色等无关容器尺寸的属性,那么便省去了第一步计算位置的时间。也就是说如果改变属性在瀑布图中开始的越早(越往上),那么影响就越大,效率就越低。reflow和repaint会导致所有受影响节点所在layer的位图重绘,反复执行上面的过程,导致效率降低。

为了把代价降到最低,当然最好只留下compositing layer这一个步骤即可。假设当我们改变一个容器的样式时,影响的只是它自己,并且还无需重绘,直接通过在GPU中改变纹理的属性来改变样式,岂不是更好?这当然是可以实现的,前提是你有自己的layer

这也是上面硬件加速hack的原理,也是css动画的原理——给元素创建自己layer,而非与页面上大部分的元素共用layer。

什么样的元素才能创建自己layer呢?在Chrome中至少要符合以下条件之一:

  • Layer has 3D or perspective transform CSS properties(有3D元素的属性)
  • Layer is used by <video> element using accelerated video decoding(video标签并使用加速视频解码)
  • Layer is used by a <canvas> element with a 3D context or accelerated 2D context(canvas元素并启用3D)
  • Layer is used for a composited plugin(插件,比如flash)
  • Layer uses a CSS animation for its opacity or uses an animated webkit transform(CSS动画)
  • Layer uses accelerated CSS filters(CSS滤镜)
  • Layer with a composited descendant has information that needs to be in the composited layer tree, such as a clip or reflection(有一个后代元素是独立的layer)
  • Layer has a sibling with a lower z-index which has a compositing layer (in other words the layer is rendered on top of a composited layer)(元素的相邻元素是独立layer)

很明显刚刚我们看到的播放页中的flash和开启了translate3d样式的焦点图符合上面的条件。

同时你也可以勾选Chrome开发工具中的rendering选显卡下的Show composited layer borders 选项。页面上的layer便会加以边框区别开来。为了验证我们的想法,看下面这样一段代码:

<html>
<head>
  <style type="text/css">
  div {
      -webkit-animation-duration: 5s;
      -webkit-animation-name: slide;
      -webkit-animation-iteration-count: infinite;
      -webkit-animation-direction: alternate;
      width: 200px;
      height: 200px;
      margin: 100px;
      background-color: skyblue;
  }
  @-webkit-keyframes slide {
      from {
          -webkit-transform: rotate(0deg);
      }
      to {
          -webkit-transform: rotate(120deg);
      }
  }
  </style>
</head>
<body>
  <div id="foo">I am a strange root.</div>
</body>
</html>

运行时的timeline截图如下:

可见元素有自己的layer,并且在动画的过程中没有触发reflow和repaint。

最后再看看淘宝首页,不仅仅只有焦点图才拥有了独立的layer:

但太多的layer也未必是一件好事情,有兴趣的同学可以看一看这篇文章:Jank Busting Apple’s Home Page。看一看在苹果首页太多layer时出现的问题。

扫码二维码 获取免费视频学习资料

Python编程学习

查 看2022高级编程视频教程免费获取