C数据结构 - KMP算法的实现

清华大佬耗费三个月吐血整理的几百G的资源,免费分享!....>>>

// KMP字符串模式匹配算法
// 输入: S是主串,T是模式串,pos是S中的起始位置
// 输出: 如果匹配成功返回起始位置,否则返回-1
int KMP(PString S, PString T, int pos)
{
    assert(NULL != S);
    assert(NULL != T);
    assert(pos >= 0);
    assert(pos < S->length);
     
    if (S->length < T->length)
        return -1;
 
    printf("主串\t = %s\n", S->str);
    printf("模式串\t = %s\n", T->str);
 
    int *next = (int *)malloc(T->length * sizeof(int));
    // 得到模式串的next数组
    GetNextArray(T, next);
 
    int i, j;
    for (i = pos, j = 0; i < S->length && j < T->length; )
    {
        // i是主串游标,j是模式串游标
        if (-1 == j ||                // 模式串游标已经回退到第一个位置
            S->str[i] == T->str[j]) // 当前字符匹配成功
        {
            // 满足以上两种情况时两个游标都要向前进一步
            ++i;
            ++j;
        }
        else                        //  匹配不成功,模式串游标回退到当前字符的next值
        {
            j = next[j];
        }
    }
 
    free(next);
 
    if (j >= T->length)
    {
        // 匹配成功
        return i - T->length;
    }
    else
    {
        // 匹配不成功
        return -1;
    }
}
 
 
 
 //  得到字符串的next数组
 void  GetNextArray(PString pstr,  int  next[])
 {
    assert(NULL  !=  pstr);
    assert(NULL  !=  next);
    assert(pstr -> length  >   0 );
 
     //  第一个字符的next值是-1,因为C中的数组是从0开始的
     next[ 0 ]  =   - 1 ;
     for  ( int  i  =   0 , j  =   - 1 ; i  <  pstr -> length  -   1 ; )
     {
         //  i是主串的游标,j是模式串的游标
         //  这里的主串和模式串都是同一个字符串
          if  ( - 1   ==  j  ||                          //  如果模式串游标已经回退到第一个字符
             pstr -> str[i]  ==  pstr -> str[j])     //  如果匹配成功
          {
             //  两个游标都向前走一步
              ++ i;
             ++ j;
             //  存放当前的next值为此时模式串的游标值
             next[i]  =  j;
        }
         else                                  //  匹配不成功j就回退到上一个next值
          {
            j  =  next[j];
        }
    }
}
 
 
 
#include  < stdio.h >
#include  < stdlib.h >
#include  < assert.h >
#include  < string .h >
  
 #define  MAX_LEN_OF_STR    30             //  字符串的最大长度
  
typedef  struct  String                 //  这里需要的字符串数组,存放字符串及其长度
 {
     char     str[MAX_LEN_OF_STR];     //  字符数组
      int         length;                     //  字符串的实际长度
 } String,  * PString;
 
 //  得到字符串的next数组
 void  GetNextArray(PString pstr,  int  next[])
 {
    assert(NULL  !=  pstr);
    assert(NULL  !=  next);
    assert(pstr -> length  >   0 );
 
     //  第一个字符的next值是-1,因为C中的数组是从0开始的
     next[ 0 ]  =   - 1 ;
     for  ( int  i  =   0 , j  =   - 1 ; i  <  pstr -> length  -   1 ; )
     {
         //  i是主串的游标,j是模式串的游标
         //  这里的主串和模式串都是同一个字符串
          if  ( - 1   ==  j  ||                          //  如果模式串游标已经回退到第一个字符
             pstr -> str[i]  ==  pstr -> str[j])     //  如果匹配成功
          {
             //  两个游标都向前走一步
              ++ i;
             ++ j;
             //  存放当前的next值为此时模式串的游标值
             next[i]  =  j;
        }
         else                                  //  匹配不成功j就回退到上一个next值
          {
            j  =  next[j];
        }
    }
}
  
 //  KMP字符串模式匹配算法
 //  输入: S是主串,T是模式串,pos是S中的起始位置
 //  输出: 如果匹配成功返回起始位置,否则返回-1
 int  KMP(PString S, PString T,  int  pos)
 {
    assert(NULL  !=  S);
    assert(NULL  !=  T);
    assert(pos  >=   0 );
    assert(pos  <  S -> length);
     
     if  (S -> length  <  T -> length)
         return   - 1 ;
 
    printf( " 主串\t = %s\n " , S -> str);
    printf( " 模式串\t = %s\n " , T -> str);
 
     int   * next  =  ( int   * )malloc(T -> length  *   sizeof ( int ));
     //  得到模式串的next数组
     GetNextArray(T, next);
 
     int  i, j;
     for  (i  =  pos, j  =   0 ; i  <  S -> length  &&  j  <  T -> length; )
     {
         //  i是主串游标,j是模式串游标
          if  ( - 1   ==  j  ||                  //  模式串游标已经回退到第一个位置
             S -> str[i]  ==  T -> str[j])  //  当前字符匹配成功
          {
             //  满足以上两种情况时两个游标都要向前进一步
              ++ i;
             ++ j;
        }
         else                          //   匹配不成功,模式串游标回退到当前字符的next值
          {
            j  =  next[j];
        }
    }
  
    free(next);
 
     if  (j  >=  T -> length)
     {
         //  匹配成功
          return  i  -  T -> length;
    }
     else
      {
         //  匹配不成功
          return   - 1 ;
    }
}/*
*这就是最后的程序了
*
*/